学习经历:2004年毕业于复旦大学数学研究所,方向是偏微分方程,主要研究双曲型方程解的相关理论。2013年考入中国海洋大学海洋大气学院,于2019年6月毕业,方向海洋数学技术,主要研究非线性动力系统及其应用。 科研方面:近年来,主持或参与国家自然科学基金2项,山东省基金3项,山东省教育厅项目3项。在国内外刊物发表论文30多篇。 教学方面:主持研究生教改项目一项,参与教改项目多项。讲授本科生多门基础课程和研究生课程。曾获省级教学成果奖一项,华东赛区微课比赛二等奖;指导本科生数学建模比赛获国家奖一项多项省奖;多次被评为数学竞赛优秀指导教师。参编教材3本。 近五年发表的科研论文: 1. Mengyuan Zhang , Zhiqing Liu, Xinli Zhang(通讯),Well-Posedness and Asymptotic Behavior for the Dissipative p-Biharmonic Wave Equation with Logarithmic Nonlinearity and Damping Terms,Computational Mathematics and Mathematical Physics, 63(6), 2023: 1103–1121. 2.Qingfang Shi, Xinli Zhang(通讯), Time Periodic Solution to Chemotaxis-shallow Water system in a Periodic Domain, Evolution Equations and Control Theory, 12(2), 2023: 626-646. 3.Qingfang Shi, Xinli Zhang(通讯), Time Periodic Solution for the Compressible Magneto-micropolar Fluids with External Forces in R^3,J. Korean Math. Soc. 60(3), 2023: 587–618. 4.Xinli Zhang, Yaqun Peng, Daxiong,Piao,Boundedness of Solutions of Quasi-periodic p-Laplacian Equations with Jumping Nonlinearity,Acta Mathematica Sinica,English Series, 2023(01):176-192. 5.Shufang Zhang and Xinli Zhang(通讯), Boundedness in Asymmetric Oscillations at Resonance in a Critical Situation,TAIWANESE JOURNAL OF MATHEMATICS,26(6),2022:1219-1234. 6.Xinli Zhang, Yaqun Peng, Daxiong,Piao, Quasi-periodic solutions for the general semilinear Duffing equations with asymmetric nonlinearity and oscillating potential,Science China(Mathematics),2021(05):931-946. 7.Yaqun PENG , Xinli ZHANG, Daxiong PIAO,Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation,Chinese Annals of Mathematics,Series B,2021(01):85-104. 8. Zhang, Xinli , Cai, Hong,Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain,ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK,2020(6):184. 9.张新丽 ;朴大雄, 次线性非对称Duffing方程的不变环面, 数学学报(中文版),2021(06):967-978. 10. Shanliang Zhu ; Shufang Zhang ; Xinli Zhang(通讯) ; Qingling Li,Response Solutions for a Singularly Perturbed System Involving Reflection of the Argument,Advances in Mathematical Physics,2020:1-9. |